Differential Equations Question 323

Question: The solution of the differential equation $ \frac{dy}{dx}=e^{x}+\cos x+x+\tan x $ is

Options:

A) $ y=e^{x}+\sin x+\frac{x^{2}}{2}+\log \cos x+c $

B) $ y=e^{x}+\sin x+\frac{x^{2}}{2}+\log \sec x+c $

C) $ y=e^{x}-\sin x+\frac{x^{2}}{2}+\log \cos x+c $

D) $ y=e^{x}-\sin x+\frac{x^{2}}{2}+\log \sec x+c $

Show Answer

Answer:

Correct Answer: B

Solution:

$ \frac{dy}{dx}=e^{x}+\cos x+x+\tan x $

On integrating both sides, we get $ y=e^{x}+\sin x+\frac{x^{2}}{2}+\log \sec x+c $ .