Differential Equations Question 323
Question: The solution of the differential equation $ \frac{dy}{dx}=e^{x}+\cos x+x+\tan x $ is
Options:
A) $ y=e^{x}+\sin x+\frac{x^{2}}{2}+\log \cos x+c $
B) $ y=e^{x}+\sin x+\frac{x^{2}}{2}+\log \sec x+c $
C) $ y=e^{x}-\sin x+\frac{x^{2}}{2}+\log \cos x+c $
D) $ y=e^{x}-\sin x+\frac{x^{2}}{2}+\log \sec x+c $
Show Answer
Answer:
Correct Answer: B
Solution:
$ \frac{dy}{dx}=e^{x}+\cos x+x+\tan x $
On integrating both sides, we get $ y=e^{x}+\sin x+\frac{x^{2}}{2}+\log \sec x+c $ .