Differential Equations Question 327

Question: The solution of the differential equation $ (\sin x+\cos x)dy+(\cos x-\sin x)dx=0 $ is

Options:

A) $ e^{x}(\sin x+\cos x)+c=0 $

B) $ e^{y}(\sin x+\cos x)=c $

C) $ e^{y}(\cos x-\sin x)=c $

D) $ e^{x}(\sin x-\cos x)=c $

Show Answer

Answer:

Correct Answer: B

Solution:

$ \frac{dy}{dx}=-\frac{\cos x-\sin x}{\sin x+\cos x} $

Therefore $ dy=-( \frac{\cos x-\sin x}{\sin x+\cos x} )dx $

On integrating both sides, we get

Therefore $ y=-\log (\sin x+\cos x)+\log c $

Therefore $ y=\log ( \frac{c}{\sin x+\cos x} ) $

Therefore $ e^{y}(\sin x+\cos x)=c $ .