Differential Equations Question 328

Question: The solution of the differential equation $ \frac{dy}{dx}=(1+x)(1+y^{2}) $ is

Options:

A) $ y=\tan (x^{2}+x+c) $

B) $ y=\tan (2x^{2}+x+c) $

C) $ y=\tan (x^{2}-x+c) $

D) $ y=\tan ( \frac{x^{2}}{2}+x+c ) $

Show Answer

Answer:

Correct Answer: D

Solution:

$ \frac{dy}{dx}=(1+x)(1+y^{2}) $

Therefore $ \frac{dy}{1+y^{2}}=(1+x)dx $

On integrating both sides, we get $ {{\tan }^{-1}}y=\frac{x^{2}}{2}+x+c $

Therefore $ y=\tan ( \frac{x^{2}}{2}+x+c ) $ .