Differential Equations Question 33

Question: The solution of $ \frac{d^{2}y}{dx^{2}}=\cos x-\sin x $ is

Options:

A) $ y=-\cos x+\sin x+c_1x+c_2 $

B) $ y=-\cos x-\sin x+c_1x+c_2 $

C) $ y=\cos x-\sin x+c_1x^{2}+c_2x $

D) $ y=\cos x+\sin x+c_1x^{2}+c_2x $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \frac{d^{2}y}{dx^{2}}=\cos x-\sin x $ .

On integrating both sides, we get
$ \frac{dy}{dx}=\sin x+\cos x+c_1 $

Again $ y=-\cos x+\sin x+c_1x+c_2 $ .