Differential Equations Question 33
Question: The solution of $ \frac{d^{2}y}{dx^{2}}=\cos x-\sin x $ is
Options:
A) $ y=-\cos x+\sin x+c_1x+c_2 $
B) $ y=-\cos x-\sin x+c_1x+c_2 $
C) $ y=\cos x-\sin x+c_1x^{2}+c_2x $
D) $ y=\cos x+\sin x+c_1x^{2}+c_2x $
Show Answer
Answer:
Correct Answer: A
Solution:
$ \frac{d^{2}y}{dx^{2}}=\cos x-\sin x $ .
On integrating both sides, we get
$ \frac{dy}{dx}=\sin x+\cos x+c_1 $
Again $ y=-\cos x+\sin x+c_1x+c_2 $ .