Differential Equations Question 333

Question: The solution of the differential equation $ \frac{dy}{dx}=1+x+y+xy $ is

[AISSE 1985; AI CBSE 1990; MP PET 2003]

Options:

A) $ \log (1+y)=x+\frac{x^{2}}{2}+c $

B) $ {{(1+y)}^{2}}=x+\frac{x^{2}}{2}+c $

C) $ \log (1+y)=\log (1+x)+c $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ \frac{dy}{dx}=1+x+y+xy $

Therefore $ \frac{dy}{dx}=(1+x)(1+y) $

Therefore $ \frac{dy}{dx}+\sin ( \frac{x+y}{2} )=\sin ( \frac{x-y}{2} ) $

On integrating, we get $ \log (1+y)=\frac{x^{2}}{2}+x+c $ .