Differential Equations Question 334

Question: The solution of $ \frac{dy}{dx}+2y\tan x=\sin x $ , is

[DCE 1999]

Options:

A) $ y{{\sec }^{3}}x={{\sec }^{2}}x+c $

B) $ y{{\sec }^{2}}x=\sec x+c $

C) $ y\sin x=\tan x+c $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ \frac{dy}{dx}+2y\tan x=\sin x $ is a linear differential equation of the form $ \frac{dy}{dx}+yf(x)=g(x) $ \ I.F. $ ={e^{\int{f(x)dx}}}={e^{\int{2\tan xdx}}}={e^{2\log (\sec x)}}={e^{\log {{\sec }^{2}}x}}={{\sec }^{2}}x $

Hence, the solution is $ y(I\text{.F}\text{.)}=\int{g(x)I\text{.F}\text{.}dx+c} $

$ y({{\sec }^{2}}x)=\int{\sin x{{\sec }^{2}}xdx+c} $

Therefore $ y{{\sec }^{2}}x=\int{\sec x\tan xdx+c} $

Therefore $ y{{\sec }^{2}}x=\sec x+c $ .