Differential Equations Question 335

Question: The solution of the differential equation $ (x^{2}-yx^{2})\frac{dy}{dx}+y^{2}+xy^{2}=0 $ is

[Pb. CET 2003]

Options:

A) $ \log ( \frac{x}{y} )=\frac{1}{x}+\frac{1}{y}+c $

B) $ \log ( \frac{y}{x} )=\frac{1}{x}+\frac{1}{y}+c $

C) $ \log ( xy )=\frac{1}{x}+\frac{1}{y}+c $

D) $ \log ( xy )+\frac{1}{x}+\frac{1}{y}=c $

Show Answer

Answer:

Correct Answer: A

Solution:

The given equation $ (x^{2}-yx^{2})\frac{dy}{dx}+y^{2}+xy^{2}=0 $

Therefore $ \frac{1-y}{y^{2}}dy+\frac{1+x}{x^{2}}dx=0 $

Therefore $ ( \frac{1}{y^{2}}-\frac{1}{y} )dy+( \frac{1}{x^{2}}+\frac{1}{x} )dx=0 $

On integrating, we get the required solution $ \log ( \frac{x}{y} )=\frac{1}{x}+\frac{1}{y}+c $ .