Differential Equations Question 336

Question: The differential equation of the family of curves $ y=Ae^{3x}+Be^{5x}, $ where A and B are arbitrary constants, is

[MNR 1988]

Options:

A) $ \frac{d^{2}y}{dx^{2}}+8\frac{dy}{dx}+15y=0 $

B) $ \frac{d^{2}y}{dx^{2}}-8\frac{dy}{dx}+15y=0 $

C) $ \frac{d^{2}y}{dx^{2}}-\frac{dy}{dx}+y=0 $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ y=Ae^{3x}+Be^{5x} $

Therefore $ \frac{dy}{dx}=3Ae^{3x}+5Be^{5x} $

Therefore $ \frac{d^{2}y}{dx^{2}}=9Ae^{3x}+25Be^{5x} $

Therefore $ \frac{d^{2}y}{dx^{2}}-8\frac{dy}{dx}+15y=0 $ (By inspection)