Differential Equations Question 341

Question: If $ \frac{dy}{dx}=\frac{xy+y}{xy+x} $ , then the solution of the differential equation is

[SCRA 1980]

Options:

A) $ y=xe^{x}+c $

B) $ y=e^{x}+c $

C) $ y=Ax{e^{x-y}} $

D) $ y=x+A $

Show Answer

Answer:

Correct Answer: C

Solution:

$ \frac{dy}{dx}=\frac{xy+y}{xy+x} $

Therefore $ ( \frac{1+y}{y} )dy=( \frac{1+x}{x} )dx $

On integrating both sides, we get $ \log y+y=\log x+x+\log A $

Therefore $ \log ( \frac{y}{Ax} )=x-y $

Therefore $ y=Ax{e^{x-y}} $ .