Differential Equations Question 342

Question: The general solution of the equation $ (e^{y}+1)\cos xdx+e^{y}\sin xdy=0 $ is

[SCRA 1986]

Options:

A) $ (e^{y}+1)\cos x=c $

B) $ (e^{y}-1)\sin x=c $

C) $ (e^{y}+1)\sin x=c $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ (e^{y}+1)\cos xdx+e^{y}\sin xdy=0 $

Therefore $ \frac{e^{y}dy}{e^{y}+1}+\frac{\cos x}{\sin x}dx=0 $

On integrating both the functions, we get $ \log (e^{y}+1)+\log (\sin x)=\log c $

Therefore $ (e^{y}+1)\sin x=c $ .