Differential Equations Question 344

Question: The equation of family of curves for which the length of the normal is equal to the radius vector is

Options:

A) $ y^{2}\pm x^{2}=k $

B) $ y\pm x=k $

C) $ y^{2}=kx $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Length of the normal $ =y\sqrt{1+{{( \frac{dy}{dx} )}^{2}}} $

It is given that $ y\sqrt{1+{{( \frac{dy}{dx} )}^{2}}}=\sqrt{x^{2}+y^{2}} $ ( $ \because $ Radius vector $ =r=\sqrt{x^{2}+y^{2}} $ )

Therefore $ y^{2}+y^{2}{{( \frac{dy}{dx} )}^{2}}=x^{2}+y^{2} $

Therefore $ y^{2}{{( \frac{dy}{dx} )}^{2}}=x^{2} $

Therefore $ ydy\pm xdx=0 $

Therefore $ y^{2}\pm x^{2}=k $ .