Differential Equations Question 345

Question: The solution of the differential equation $ \frac{dy}{dx}=(ae^{bx}+c\cos mx) $ is

Options:

A) $ y=\frac{ae^{x}}{b}+\frac{c}{m}\sin mx+k $

B) $ y=ae^{x}+c\sin mx+k $

C) $ y=\frac{ae^{bx}}{b}+\frac{c}{m}\sin mx+k $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ \frac{dy}{dx}=(ae^{bx}+c\cos mx) $

Therefore $ dy=(ae^{bx}+c\cos mx)dx $

On integrating, $ y=\frac{ae^{bx}}{b}+\frac{c\sin (mx)}{m}+k $ .