Differential Equations Question 345
Question: The solution of the differential equation $ \frac{dy}{dx}=(ae^{bx}+c\cos mx) $ is
Options:
A) $ y=\frac{ae^{x}}{b}+\frac{c}{m}\sin mx+k $
B) $ y=ae^{x}+c\sin mx+k $
C) $ y=\frac{ae^{bx}}{b}+\frac{c}{m}\sin mx+k $
D) None of these
Show Answer
Answer:
Correct Answer: C
Solution:
$ \frac{dy}{dx}=(ae^{bx}+c\cos mx) $
Therefore $ dy=(ae^{bx}+c\cos mx)dx $
On integrating, $ y=\frac{ae^{bx}}{b}+\frac{c\sin (mx)}{m}+k $ .