Differential Equations Question 347

Question: Solution of the differential equation $ \frac{dy}{dx}+y{{\sec }^{2}}x=\tan x{{\sec }^{2}}x $ is

[DCE 2001, 05]

Options:

A) $ y=\tan x-1+c{e^{-\tan x}} $

B) $ y^{2}=\tan x-1+c{e^{\tan x}} $

C) $ y{e^{\tan x}}=\tan x-1+c $

D) $ y{e^{-\tan x}}=\tan x-1+c $

Show Answer

Answer:

Correct Answer: A

Solution:

I.F. = $ {e^{\int{{{\sec }^{2}}xdx}}}={e^{\tan x}} $

\ Solution is $ y{e^{\tan x}}=c+\int{\tan x{e^{\tan x}}{{\sec }^{2}}xdx} $

Therefore $ y=c{e^{-\tan x}}+\tan x-1 $ .