Differential Equations Question 350

Question: The solution of the differential equation $ \frac{dy}{dx}=\frac{(1+x)y}{(y-1)x} $ is

[AISSE 1986; AI CBSE 1982; MP PET 2004]

Options:

A) $ \log xy+x+y=c $

B) $ \log ( \frac{x}{y} )+x-y=c $

C) $ \log xy+x-y=c $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ \frac{dy}{dx}=\frac{(1+x)y}{(y-1)x} $ can be written as $ \frac{y-1}{y}dy=\frac{(1+x)}{x}dx $

Therefore $ ( 1-\frac{1}{y} )dy=( 1+\frac{1}{x} )dx $

Therefore $ (y-\log y)=(x+\log x)+c $

Therefore $ x-y+\log xy=c $ .