Differential Equations Question 351

Question: The solution of the equation $ {{\sin }^{-1}}( \frac{dy}{dx} )=x+y $ is

Options:

A) $ \tan (x+y)+\sec (x+y)=x+c $

B) $ \tan (x+y)-\sec (x+y)=x+c $

C) $ \tan (x+y)+\sec (x+y)+x+c=0 $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

Here $ \frac{dy}{dx}=\sin (x+y) $

Now put $ \log (1+y)=x+\frac{x^{2}}{2}+\log c $ and $ \frac{dy}{dx}=\frac{dv}{dx}-1 $

Therefore $ \frac{dy}{dx}=\sin (x+y) $ reduces to $ \frac{dv}{1+\sin v}=dx $

Now on integrating both the sides, we get $ \tan v-\sec v=x+c $ or $ \tan (x+y)-\sec (x+y)=x+c $ .