Differential Equations Question 355

Question: The solution of the equation $ \frac{dy}{dx}+\sqrt{\frac{1-y^{2}}{1-x^{2}}}=0 $ is

[Orissa JEE 2003]

Options:

A) $ x\sqrt{1-y^{2}}-y\sqrt{1-x^{2}}=c $

B) $ x\sqrt{1-y^{2}}+y\sqrt{1-x^{2}}=c $

C) $ x\sqrt{1+y^{2}}+y\sqrt{1+x^{2}}=c $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ \frac{dy}{dx}+\sqrt{\frac{1-y^{2}}{1-x^{2}}}=0 $

Therefore $ \int _{{}}^{{}}{\frac{dy}{\sqrt{1-y^{2}}}}=-\int _{{}}^{{}}{\frac{dx}{\sqrt{1-x^{2}}}} $

Therefore $ {{\sin }^{-1}}y=-{{\sin }^{-1}}x+{{\sin }^{-1}}c $

Therefore $ {{\sin }^{-1}}[ x\sqrt{1-y^{2}}+y\sqrt{1-x^{2}} ]={{\sin }^{-1}}c $

Therefore $ x\sqrt{1-y^{2}}+y\sqrt{1-x^{2}}=c $ .