Differential Equations Question 357

Question: The solution of the differential equation $ (1+x^{2})\frac{dy}{dx}=x(1+y^{2}) $ is

[AISSE 1983]

Options:

A) $ 2{{\tan }^{-1}}y=\log (1+x^{2})+c $

B) $ {{\tan }^{-1}}y=\log (1+x^{2})+c $

C) $ 2{{\tan }^{-1}}y+\log (1+x^{2})+c=0 $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ (1+x^{2})\frac{dy}{dx}=x(1+y^{2}) $

Therefore $ \frac{1}{1+y^{2}}dy=\frac{x}{1+x^{2}}dx $

On integrating, we get $ {{\tan }^{-1}}y=\frac{1}{2}\log (1+x^{2})+c $

Therefore $ 2{{\tan }^{-1}}y=\log (1+x^{2})+c $ .