Differential Equations Question 358

Question: A continuously differentiable function $ \varphi (x)in(0,\pi ) $ satisfying $ {y}’=1+y^{2},y(0)=0=y(\pi ) $ is

[MP PET 2000]

Options:

A) $ \tan x $

B) $ x(x-\pi ) $

C) $ (x-\pi ) $

$ (1-e^{x}) $

D) Not possible

Show Answer

Answer:

Correct Answer: D

Solution:

$ \frac{dy}{dx}=1+y^{2} $

Therefore $ \frac{dy}{1+y^{2}}=dx $

Integrating both sides,
$ \int{\frac{dy}{1+y^{2}}=\int{dx}} $

Therefore $ {{\tan }^{-1}}y=x+c $

At $ x=0, $

$ y=0, $ then $ c=0 $

At $ x=\pi , $

$ y=0, $ then $ {{\tan }^{-1}}0=\pi +c $

Therefore $ c=-\pi $

$ \therefore {{\tan }^{-1}}y=x $

Therefore $ y=\tan x=\varphi (x) $

Therefore, solution is $ y=\tan x $

But $ \tan x $ is not continuous function in $ (0,\pi ) $

Hence, $ \varphi (x) $ is not possible in $ (0,\pi ) $ .