Differential Equations Question 36

Question: The general solution of the differential equation $ ydx+(1+x^{2}){{\tan }^{-1}}xdy=0, $ is

[MP PET 1995]

Options:

A) $ y{{\tan }^{-1}}x=c $

B) $ x{{\tan }^{-1}}y=c $

C) $ y+{{\tan }^{-1}}x=c $

D) $ x+{{\tan }^{-1}}y=c $

Show Answer

Answer:

Correct Answer: A

Solution:

$ ydx+(1+x^{2}){{\tan }^{-1}}xdy=0 $

Therefore $ \int _{{}}^{{}}{\frac{dx}{(1+x^{2}){{\tan }^{-1}}x}}=-\int _{{}}^{{}}{\frac{dy}{y^{2}}} $

Therefore $ \frac{1}{2^{x}}-\frac{1}{2^{y}}=\frac{c}{\log 2} $

Therefore $ \log (y{{\tan }^{-1}}x)+\log c=0 $

Therefore $ y = c \tan^{-1}x $ .



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index