Differential Equations Question 36

Question: The general solution of the differential equation $ ydx+(1+x^{2}){{\tan }^{-1}}xdy=0, $ is

[MP PET 1995]

Options:

A) $ y{{\tan }^{-1}}x=c $

B) $ x{{\tan }^{-1}}y=c $

C) $ y+{{\tan }^{-1}}x=c $

D) $ x+{{\tan }^{-1}}y=c $

Show Answer

Answer:

Correct Answer: A

Solution:

$ ydx+(1+x^{2}){{\tan }^{-1}}xdy=0 $

Therefore $ \int _{{}}^{{}}{\frac{dx}{(1+x^{2}){{\tan }^{-1}}x}}=-\int _{{}}^{{}}{\frac{dy}{y}} $

Therefore $ \frac{1}{2^{x}}-\frac{1}{2^{y}}=\frac{c_1}{\log 2}=c $

Therefore $ \log (y{{\tan }^{-1}}x)+\log c=0 $

Therefore $ y{{\tan }^{-1}}x=c $ .