Differential-Equations Question 373
Question: The solution of $ \frac{dy}{dx}+\sqrt{,( \frac{1-y^{2}}{1-x^{2}} )},=,0 $ is
[DCE 1999]
Options:
A) $ {{\tan }^{-1}}x+{{\cot }^{-1}}x=c $
B) $ {{\sin }^{-1}}x+{{\sin }^{-1}}y=c $
C) $ {{\sec }^{-1}}x+cose{c^{-1}}x=c $
D) None of these
Show Answer
Answer:
Correct Answer: B
Solution:
Given equation is $ \int{\frac{dy}{\sqrt{1-y^{2}}}+\int{\frac{dx}{\sqrt{1-x^{2}}}=0}} $ Integrating we get, $ {{\sin }^{-1}}y+{{\sin }^{-1}}x=c $ .