Differential-Equations Question 374

Question: The solution of $ \frac{dy}{dx}={2^{y-x}} $ is

[Karnataka CET 2000]

Options:

A) $ 2^{x}+2^{y}=c $

B) $ 2^{x}-2^{y}=c $

C) $ \frac{1}{2^{x}}-\frac{1}{2^{y}}=c $

D) $ x+y=c $

Show Answer

Answer:

Correct Answer: C

Solution:

Given $ \frac{dy}{dx}={2^{y-x}} $ $ =\frac{2^{y}}{2^{x}} $ or $ \frac{dy}{2^{y}}=\frac{dx}{2^{x}} $ Integrating both sides, $ \int{\frac{dy}{2^{y}}=\int{\frac{dx}{2^{x}}}} $ $ -{2^{-y}}\log 2=-{2^{-x}}\log 2+c_1 $ $ \frac{\log 2}{2^{x}}-\frac{\log 2}{2^{y}}=c_1 $ ; $ \frac{1}{2^{x}}-\frac{1}{2^{y}}=\frac{c_1}{\log 2}=c $ .