Differential Equations Question 46

Question: The solution of the differential equation $ 3{e^{x\tan }}ydx+(1-e^{x}){{\sec }^{2}}ydy=0 $ is

Options:

A) $ e^{x}\tan y=C $

B) $ Ce^{x}={{(1-\tan y)}^{3}} $

C) $ C\tan y={{(1-e^{x})}^{2}} $

D) $ \tan y=C{{(1-e^{x})}^{3}} $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] $ 3e^{x}\tan ydx+(1-e^{x}){{\sec }^{2}}ydy=0 $
$ \Rightarrow \frac{3e^{x}}{1-e^{x}}dx+\frac{{{\sec }^{2}}y}{\tan y}dy=0 $ Integrating we get $ \int{\frac{3e^{x}}{1-e^{x}}dx+\int{\frac{{{\sec }^{2}}y}{\tan y}dy=D}} $ ,
$ \Rightarrow -3\ell n(1-e^{x})+\ell ntany=D $
$ \Rightarrow -\ell n{{(1-e^{x})}^{3}}+\ell ntany=D $
$ \Rightarrow \ell n\frac{\tan y}{{{(1-e^{x})}^{3}}}=\ell nC\Rightarrow \tan y=C{{(1-e^{x})}^{3}} $