Differential Equations Question 47

Question: $ y+x^{2}=\frac{dy}{dx} $ has the solution

[EAMCET 2002]

Options:

A) $ y+x^{2}+2x+2=ce^{x} $

B) $ y+x+x^{2}+2=ce^{2x} $

C) $ y+x+2x^{2}+2=ce^{x} $

D) $ y^{2}+x+x^{2}+2=ce^{x} $

Show Answer

Answer:

Correct Answer: A

Solution:

$ y+x^{2}=\frac{dy}{dx} $

Therefore $ \frac{dy}{dx}-y=x^{2} $

This is the linear differential equation in y, where $ P=-1,Q=x^{2} $

I.F. $ ={e^{\int{P.dx}}} $

$ ={e^{\int{-dx}}}={e^{-x}} $

Hence solution, $ y.(I\text{.F}).=\int{Q.(I\text{.F})dx+c} $

Therefore $ y{e^{-x}}=-x^{2}{e^{-x}}-2x{e^{-x}}-2{e^{-x}}+c $

Therefore $ y+x^{2}+2x+2=ce^{x} $ .