Differential Equations Question 49

Question: The solution of the differential equation $ x^{4}\frac{dy}{dx}+x^{3}y+cosec(xy)=0 $ is equal to

[Pb. CET 2004]

Options:

A) $ 2\cos (xy)+{x^{-2}}=c $

B) $ 2\cos (xy)+{y^{-2}}=c $

C) $ 2\sin (xy)+{x^{-2}}=c $

D) $ 2\sin (xy)+{y^{-2}}=c $

Show Answer

Answer:

Correct Answer: A

Solution:

$ x^{4}\frac{dy}{dx}+x^{3}y+cosec(xy)=0 $

$ x^{4}dy+x^{3}ydx+\text{cosec }(xy)dx=0 $

$ x^{3}(xdy+ydx)+\text{cosec }(xy)dx=0 $

$ x^{3}d(xy)+\text{cosec }(xy)dx=0 $

$ \frac{d(xy)}{\text{cosec }(xy)}+\frac{dx}{x^{3}}=0 $

Integrating both sides, $ \int _{{}}^{{}}{\frac{d(xy)}{\text{cosec }(xy)}}+\int _{{}}^{{}}{\frac{dx}{x^{3}}}=0 $

$ \int _{{}}^{{}}{\sin (xy)d(xy)+\int _{{}}^{{}}{{x^{-3}}dx=0}} $

$ -\cos (xy)+( \frac{{x^{-2}}}{-2} )=c $ ; $ 2\cos (xy)+{x^{-2}}=c $ .