Differential Equations Question 5

Question: An integrating factor of the differential equation $ (1-x^{2})\frac{dy}{dx}-xy=1, $ is

[MP PET 2001]

Options:

A) - x

B) $ -\frac{x}{(1-x^{2})} $

C) $ \sqrt{(1-x^{2})} $

D) $ \frac{1}{2}\log (1-x^{2}) $

Show Answer

Answer:

Correct Answer: C

Solution:

$ (1-x^{2}).\frac{dy}{dx}-xy=1 $

Therefore $ \frac{dy}{dx}-\frac{x}{1-x^{2}}.y=\frac{1}{1-x^{2}} $

I.F. $ ={e^{\int{p.dx}}}={e^{\int{\frac{-x}{1-x^{2}}dx}}} $

$ ={e^{\frac{1}{2}\log (1-x^{2})}}=\sqrt{1-x^{2}} $ .