Differential Equations Question 52

Question: The solution of $ \cos (x+y)dy=dx $ is

[DCE 1999]

Options:

A) $ y=\tan ( \frac{x+y}{2} )+c $

B) $ y+{{\cos }^{-1}}( \frac{y}{x} )=c $

C) $ y=x\sec ( \frac{y}{x} )+c $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ \cos (x+y)dy=dx $

…..(i) Put $ x+y=v $ . Differentiate $ 1+\frac{dy}{dx}=\frac{dv}{dx} $

Put these values in (i), $ \cos v( \frac{dv}{dx}-1 )=1 $

Therefore $ \cos v\frac{dv}{dx}=1+\cos v $

Therefore $ \frac{\cos v}{1+\cos v}dv=dx $

Therefore $ [ \frac{2{{\cos }^{2}}(v/2)-1}{2{{\cos }^{2}}(v/2)} ]dv=dx $

Therefore $ [ 1-\frac{1}{2}{{\sec }^{2}}(v/2) ]dv=dx $

Integrate, $ v-\tan (v/2)=x+c $

$ x+y-\tan ( \frac{x+y}{2} )=x+c $

Therefore $ y=\tan ( \frac{x+y}{2} )+c $ .