Differential Equations Question 54

Question: The solution of $ \frac{dy}{dx}+\sqrt{( \frac{1-y^{2}}{1-x^{2}} )}=0 $ is

[DCE 1999]

Options:

A) $ {{\tan }^{-1}}x+{{\cot }^{-1}}x=c $

B) $ {{\sin }^{-1}}x+{{\sin }^{-1}}y=c $

C) $ {{\sec }^{-1}}x+cose{c^{-1}}x=c $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

Given equation is $ \int{\frac{dy}{\sqrt{1-y^{2}}}+\int{\frac{dx}{\sqrt{1-x^{2}}}=0}} $

Integrating we get, $ {{\sin }^{-1}}y+{{\sin }^{-1}}x=c $ .