Differential Equations Question 57

Question: The differential equation of family of curves whose tangent form an angle of $ \pi /4 $ with the hyperbola $ xy=C^{2} $ is

Options:

A) $ \frac{dy}{dx}=\frac{x^{2}+C^{2}}{x^{2}-C^{2}} $

B) $ \frac{dy}{dx}=\frac{x^{2}-C^{2}}{x^{2}+C^{2}} $

C) $ \frac{dy}{dx}=-\frac{C^{2}}{x^{2}} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Let the slope of tangent of required family be $ \frac{dy}{dx}=m_1 $ Also $ y=\frac{C^{2}}{x} $ ; therefore, $ \frac{dy}{dx}=-\frac{C^{2}}{x^{2}}=m^{2} $ (say). By the given condition, we have $ \tan \frac{\pi }{4} $

$ =\frac{m_1-m_2}{1+m_1m_2}\Rightarrow 1+m_1m_2=m_1-m_2 $
$ \Rightarrow \frac{dy}{dx}+\frac{C^{2}}{x^{2}}=1-\frac{C^{2}}{x^{2}}\frac{dy}{dx}\Rightarrow \frac{dy}{dx}( 1+\frac{C^{2}}{x^{2}} ) $

$ =1-\frac{C^{2}}{x^{2}}\Rightarrow \frac{dy}{dx}=\frac{x^{2}-C^{2}}{x^{2}+C^{2}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें