Differential Equations Question 59

Question: The general solution of the differential equation $ \frac{dy}{dx}+\sin ( \frac{x+y}{2} )=\sin ( \frac{x-y}{2} ) $ is

[MP PET 2001]

Options:

A) $ \log \tan ( \frac{y}{2} )=c-2\sin x $

B) $ \log \tan ( \frac{y}{4} )=c-2\sin ( \frac{x}{2} ) $

C) $ \log \tan ( \frac{y}{2}+\frac{\pi }{4} )=c-2\sin x $

D) $ \log \tan ( \frac{y}{4}+\frac{\pi }{4} )=c-2\sin ( \frac{x}{2} ) $

Show Answer

Answer:

Correct Answer: B

Solution:

$ \frac{dy}{dx}+\sin ( \frac{x+y}{2} )=\sin ( \frac{x-y}{2} ) $

Therefore $ \frac{dy}{dx}=\sin ( \frac{x-y}{2} )-\sin ( \frac{x+y}{2} ) $

Therefore $ \frac{dy}{dx}=-2\sin ( \frac{y}{2} ).\cos ( \frac{x}{2} ) $

Therefore $ cosec( \frac{y}{2} ).dy=-2\cos ( \frac{x}{2} )dx $

Integrating both sides, $ \int{cosec( \frac{y}{2} )dy=-\int{2\cos ( \frac{x}{2} )dx+c}} $ .

Therefore $ \frac{\log \tan \frac{y}{4}}{1/2}=-\frac{2\sin ( x/2 )}{1/2}+c $

Therefore $ \log (\tan \frac{y}{4})=c-2\sin (x/2) $ .