Differential Equations Question 6

Question: Solution of the equation $ (1-x^{2})dy+xydx=xy^{2}dx $ is

[DSSE 1989]

Options:

A) $ {{(y-1)}^{2}}(1-x^{2})=0 $

B) $ {{(y-1)}^{2}}{{(1-x)}^{2}}=c^{2}y^{2} $

C) $ {{(y-1)}^{2}}(1+x^{2})=c^{2}y^{2} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ (1-x^{2})dy+xydx=xy^{2}dx $

Therefore $ (1-x^{2})dy=xy(y-1)dx $

Therefore $ \frac{1}{y(y-1)}dy=\frac{x}{(1-x^{2})}dx $

Now on integrating both sides, we get $ \log (y-1)-\log y=-\frac{1}{2}\log (1-x^{2})+\log c $

or $ 2\log (y-1)+\log (1-x^{2})=\log y^{2}c^{2} $

Hence the solution is $ {{(y-1)}^{2}}(1-x^{2})=c^{2}y^{2} $ .