Differential Equations Question 61

Question: The solution of the differential equation $ {{(x+y)}^{2}}\frac{dy}{dx}=a^{2} $ is

[AMU 2001]

Options:

A) $ {{(x+y)}^{2}}=\frac{a^{2}}{2}x+c $

B) $ {{(x+y)}^{2}}=a^{2}x+c $

C) $ {{(x+y)}^{2}}=2a^{2}x+c $

D) None of these

Show Answer

Answer:

Correct Answer: D

Solution:

Put $ x+y=v $

Therefore $ 1+\frac{dy}{dx}=\frac{dv}{dx} $

Therefore $ \frac{dy}{dx}=\frac{dv}{dx}-1 $

\ $ v^{2}( \frac{dv}{dx}-1 )=a^{2} $

Therefore $ \frac{dv}{dx}=\frac{a^{2}}{v^{2}}+1=\frac{a^{2}+v^{2}}{v^{2}} $

Therefore $ \frac{v^{2}}{a^{2}+v^{2}}dv=dx $

Therefore $ ( 1-\frac{a^{2}}{a^{2}+v^{2}} )dv=dx $

Therefore $ v-a{{\tan }^{-1}}\frac{v}{a}=x+c $

Therefore $ y=a{{\tan }^{-1}}( \frac{x+y}{a} ) $ + c.