Differential Equations Question 64

Question: The solution of differential equation $ y-x\frac{dy}{dx}=a( y^{2}+\frac{dy}{dx} ) $ is

[MP PET 2002]

Options:

A) $ (x+a)(x+ay)=cy $

B) $ (x+a)(1-ay)=cy $

C) $ (x+a)(1-ay)=c $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ y-x\frac{dy}{dx}=a( y^{2}+\frac{dy}{dx} ) $

Therefore $ y-ay^{2}=a\frac{dy}{dx}+x\frac{dy}{dx} $

Therefore $ y(1-ay)=( a+x ).\frac{dy}{dx} $

Therefore $ \frac{dx}{(a+x)}=\frac{dy}{y(1-ay)} $

Integrating both sides, $ \int{\frac{dx}{(a+x)}=}\int{\frac{dy}{y(1-ay)}} $

Therefore $ \int{\frac{dx}{a+x}=\int{[ \frac{1}{y}+\frac{a}{(1-ay)} ]dx}} $

$ \log (a+x)=\log y+\frac{a\log (1-ay)}{-a} $

Therefore $ \log (a+x)=\log y-\log (1-ay)+\log c $

Therefore $ \log (x+a)(1-ay)=\log cy $

Therefore $ (x+a)(1-ay)=cy $ .