Differential Equations Question 65

Question: The solution of the equation $ (x+2y^{3})\frac{dy}{dx}-y=0 $ is

[MP PET 1998; 2002]

Options:

A) $ y(1-xy)=Ax $

B) $ y^{3}-x=Ay $

C) $ x(1-xy)=Ay $

D) $ x(1+xy)=Ay $ Where A is any arbitrary constant

Show Answer

Answer:

Correct Answer: B

Solution:

$ (x+2y^{3})\frac{dy}{dx}=y $

Therefore $ \frac{dy}{dx}=\frac{y}{x+2y^{3}} $

Therefore $ \frac{dx}{dy}=\frac{x+2y^{3}}{y} $ or $ \frac{dx}{dy}-\frac{x}{y}=2y^{2} $ , which is a linear equation of the form $ \frac{dx}{dy}+Px=Q $

So, integrating factor (I.F.) $ ={e^{-\int _{{}}^{{}}{\frac{1}{y}dy}}} $ and solution is $ x\frac{1}{y}=\int _{{}}^{{}}{\frac{1}{y}2y^{2}dy+A=y^{2}+A} $

Therefore $ x=y^{3}+Ay $

Therefore $ y^{3}-x=Ay; $ where A can be $ -ve $ or $ +ve $ .