Differential Equations Question 65

Question: The solution of the equation $ (x+2y^{3})\frac{dy}{dx}-y=0 $ is

[MP PET 1998; 2002]

Options:

A) $ y(1-xy)=Ax $

B) $ y^{3}-x=Ay $

C) $ x(1-xy)=Ay $

D) $ x(1+xy)=Ay $ Where A is any arbitrary constant

Show Answer

Answer:

Correct Answer: B

Solution:

$ (x+2y^{3})\frac{dy}{dx}=y $

Therefore $ \frac{dy}{dx}=\frac{y}{x+2y^{3}} $

Therefore $ \frac{dx}{dy}=\frac{x+2y^{3}}{y} $ or $ \frac{dx}{dy}-\frac{x}{y}=2y^{2} $ , which is a linear equation of the form $ \frac{dx}{dy}+Px=Q $

So, integrating factor (I.F.) $ ={e^{-\int _{{}}^{{}}{\frac{1}{y}dy}}} $ and solution is $ x\frac{1}{y}=\int _{{}}^{{}}{\frac{1}{y}2y^{2}dy+A=y^{2}+A} $

Therefore $ x=y^{3}+Ay $

Therefore $ y^{3}-x=Ay; $ where A can be $ -ve $ or $ +ve $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें