Differential Equations Question 72

Question: If $ ( \frac{2+\sin x}{1+y} )\frac{dy}{dx}=-\cos x,\ y(0)=1, $ then $ y( \frac{\pi }{2} ) $ =

[IIT Screening 2004]

Options:

A) 1

B) $ \frac{1}{2} $

C) $ \frac{1}{3} $

D) $ \frac{1}{4} $

Show Answer

Answer:

Correct Answer: C

Solution:

The given differential equation is $ \frac{\cos x}{2+\sin x}dx+\frac{dy}{y+1}=0 $

Therefore $ \log (2+\sin x)+\log (y+1)=\log c $

Therefore $ (y+1)(2+\sin x)=c $

Therefore $ 2\times 2=c $

Therefore $ c=4 $

Thus, $ y+1=\frac{4}{2+\sin x} $

Therefore $ y=\frac{2-\sin x}{2+\sin x} $

Therefore $ y( \frac{\pi }{2} )=\frac{1}{3} $ .