Differential Equations Question 73

Question: The solution of $ \frac{dy}{dx}+y={e^{-x}},y(0)=0 $ , is

[Kerala (Engg.) 2002]

Options:

A) $ y={e^{-x}}(x-1) $

B) $ y=xe^{x} $

C) $ y=x{e^{-x}}+1 $

D) $ y=x{e^{-x}} $

Show Answer

Answer:

Correct Answer: D

Solution:

$ \frac{dy}{dx}+y={e^{-x}} $ ; I.F. $ ={e^{\int{dx}}}=e^{x} $

\ $ ye^{x}=\int{{e^{-x}}.e^{x}dx+c} $

Therefore $ ye^{x}=x+c $

Since $ y(0)=0 $ , \ $ c=0 $

Hence, the required solution is $ ye^{x}=x $

Therefore $ y=x{e^{-x}} $ .