Differential Equations Question 74

Question: The solution of $ {e^{dy/dx}}=(x+1) $ , $ y(0)=3 $ is

[Kerala (Engg.) 2005]

Options:

A) $ y=x\log x-x+2 $

B) $ y=(x+1)\log |x+1|-x+3 $

C) $ y=(x+1)\log |x+1|+x+3 $

D) $ y=x\log x+x+3 $

E) $ y=-(x+1)\log |x+1|+x+3 $

Show Answer

Answer:

Correct Answer: B

Solution:

$ \frac{dy}{dx}=\log (x+1) $

Therefore $ dy=\log (x+1)dx $

$ y=\int{\log (x+1)dx}=x.\log (x+1)-\int{\frac{x}{x+1}dx} $

$ =x.\log (x+1)-\int{( 1-\frac{1}{x+1} )}dx $

$ =x.\log (x+1)-x+\log (x+1)+c=(x+1)\log (x+1)-x+c $

$ x=0 $ at $ y=3 $

$ 3=(1)\log (1)-0+c $

Therefore $ 3=0+c $

Therefore $ c=3 $

\ $ y=(x+1)\log |x+1|-x+3 $ .