Differential Equations Question 75

Question: Solution of the differential equation $ \frac{dy}{dx}\tan y=\sin (x+y)+\sin (x-y) $ is

[Kerala (Engg.) 2005]

Options:

A) $ \sec y+2\cos x=c $

B) $ \sec y-2\cos x=c $

C) $ \cos y-2\sin x=c $

D) $ \tan y-2\sec y=c $

E) $ \sec y+2\sin x=c $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \frac{dy}{dx}\tan y=\sin (x+y)+\sin (x-y) $

$ \frac{dy}{dx}(\tan y)=2\sin x\cos y $

Therefore $ \frac{\sin y}{{{\cos }^{2}}y}dy=2\sin xdx $

Therefore $ \int{\frac{\sin y}{{{\cos }^{2}}y}}dy=2\int{\sin xdx} $

Therefore $ \frac{1}{\cos y}=-2\cos x+c $

\ $ \sec y+2\cos x=c $ .