Differential Equations Question 76

Question: If $ y\cos x+x\cos y=\pi $ , then $ {{y}’}’(0) $ is

[IIT Screening 2005]

Options:

A) 1

B) $ \pi $

C) 0

D) $ -\pi $

Show Answer

Answer:

Correct Answer: B

Solution:

$ y\cos x+x\cos y=\pi $ Differentiate both sides with respect to x, we get $ -y\sin x+\cos x.{y}’+x(-\sin y){y}’+\cos y $ Again differentiate with respect to x $ -{{y}’}’\sin x-y\cos x+\cos x.{{y}’}’+\sin x.{y}’-\sin y.{y}’ $

$ -x[\cos y.{{({y}’)}^{2}}+\sin y.{{y}’}’]-\sin y.{y}’ $ Putting $ x=0 $ , we get $ -y+{{y}’}’-2\sin y{y}’=0 $

$ {{y}’}’=y+2{y}’\sin y $ Since at $ x=0 $ , $ y=\pi $ ; $ {{({{y}’}’)}_0}=\pi $ .