Differential Equations Question 76

Question: If $ y\cos x+x\cos y=\pi $ , then $ {{y}’}’(0) $ is

[IIT Screening 2005]

Options:

1

B) $ \pi $

0

D) $ -\pi $

Show Answer

Answer:

Correct Answer: B

Solution:

$ y\cos x+x\cos y=\pi $ Differentiate both sides with respect to x, we get $ -y\sin x+\cos x\cdot {y}’+x(-\sin y){y}’+\cos y $ Again differentiate with respect to x $ -{{y}’}’\sin x-y\cos x+\cos x\cdot {{y}’}’+\sin x\cdot {y}’-\sin y\cdot {y}’ $

$ -x[\cos y.{{({y}’)}^{2}}+\sin y.{{y}’}’]-\sin y.{y}’ $ Putting $ x=0 $ , we get $ -y+{{y}’}’-2\sin y{y}’=0 $

$ {{y}’}’=y+2{y}’\sin y $ Since at $ x=0 $ , $ y=\pi $ ; $ {{({{y}’}’)}_0}= -2\sin \pi $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें