Differential Equations Question 78

Question: Equation of curve passing through (3, 9) which satisfies the differential equation $ \frac{dy}{dx}=x+\frac{1}{x^{2}} $ , is

[WB JEE 1986]

Options:

A) $ 6xy=3x^{2}-6x+29 $

B) $ 6xy=3x^{3}-29x+6 $

C) $ 6xy=3x^{3}+29x-6 $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ \frac{dy}{dx}=x+\frac{1}{x^{2}} $

Therefore $ \int _{{}}^{{}}{dy}=\int _{{}}^{{}}{( x+\frac{1}{x^{2}} )}dx $

Therefore $ y=\frac{x^{2}}{2}-\frac{1}{x}+c $

Since it passes through (3, 9), therefore $ 9=\frac{9}{2}-\frac{1}{3}+c $

Therefore $ c=\frac{29}{6} $

\ $ y=\frac{x^{2}}{2}-\frac{1}{x}+\frac{29}{6} $

Therefore $ 6xy=3x^{3}+29x-6 $ .