Differential Equations Question 79

Question: The solution of the differential equation $ \frac{dy}{dx}+2y\cot x=3x^{2}cose{c^{2}}x $ is

Options:

A) $ y{{\sin }^{2}}x=x^{3}+c $

B) $ y\sin x=c $

C) $ y\cos x^{2}=c $

D) $ y\sin x^{2}=c $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \frac{dy}{dx}+2\cot x.y=3x^{2}cose{c^{2}}x $

This is a linear differential equation in y. I.F. $ ={e^{2\int _{{}}^{{}}{\cot xdx}}}={e^{2\log \sin x}}={{\sin }^{2}}x $

y. (I.F.)= $ \int _{{}}^{{}}{Q(I\text{.F}\text{.})dx} $

$ y.{{\sin }^{2}}x=\int _{{}}^{{}}{3x^{2}cose{c^{2}}x.{{\sin }^{2}}xdx=x^{3}+c} $ .