Differential Equations Question 8

Question: Solution of the equation $ \cos x\cos y\frac{dy}{dx}=-\sin x\sin y $ is

[DSSE 1987]

Options:

A) $ \sin y+\cos x=c $

B) $ \sin y-\cos x=c $

C) $ \sin y.\cos x=c $

D) $ \sin y=c\cos x $

Show Answer

Answer:

Correct Answer: D

Solution:

$ \cos x\cos y\frac{dy}{dx}=-\sin x\sin y $

Therefore $ \frac{\cos y}{\sin y}dy=-\frac{\sin x}{\cos x}dx $

Therefore $ \cot ydy=-\tan xdx $

On integrating, we get $ \log \sin y=\log \cos x+\log c $

Therefore $ \sin y=c\cos x $ .