Differential Equations Question 84

Question: Solution of $ (xy\cos xy+\sin xy)dx+x^{2}\cos xydy=0 $ is

Options:

A) $ x\sin (xy)=k $

B) $ xy\sin (xy)=k $

C) $ \frac{x}{y}\sin (xy)=k $

D) $ x\sin (xy)=k $

Show Answer

Answer:

Correct Answer: A

Solution:

$ [xy\cos (xy)+\sin (xy)]dx+x^{2}\cos (xy)dy=0 $

$ xy\cos (xy)dx+x^{2}\cos (xy)dy+\sin (xy)dx=0 $

$ x\cos (xy)(ydx+xdy)+\sin (xy)dx=0 $

$ \cot (xy)dxy+\frac{dx}{x}=0 $

$ \log \sin (xy)+\log x=k $

Therefore $ x\sin (xy)=k $ .