Differential Equations Question 87

Question: The solution of $ y{e^{-x/y}}dx-(x{e^{-x/y}}+y^{3})dy=0 $ is

Options:

A) $ \frac{y^{2}}{2}+{e^{-x/y}}=k $

B) $ \frac{x^{2}}{2}+{e^{-x/y}}=k $

C) $ \frac{x^{2}}{2}+{e^{x/y}}=k $

D) $ \frac{y^{2}}{2}+{e^{x/y}}=k $

Show Answer

Answer:

Correct Answer: A

Solution:

$ y{e^{-x/y}}dx-(x{e^{-x/y}}+y^{3})dy=0 $

$ {e^{-x/y}}(ydx-xdy)=y^{3}dy $

Therefore $ {e^{-x/y}}\frac{(ydx-xdy)}{y^{2}}=ydy $

$ {e^{-x/y}}d( \frac{x}{y} )=ydy $ . Integrating both sides, we get $ k-{e^{-x/y}}=\frac{y^{2}}{2} $

Therefore $ \frac{y^{2}}{2}+{e^{-x/y}}=k $