Differential Equations Question 88

Question: The solution of the differential equation $ xdy+ydx-\sqrt{1-x^{2}y^{2}}dx=0 $ is

Options:

A) $ {{\sin }^{-1}}xy=c-x $

B) $ xy=\sin (x+c) $

C) $ \log (1-x^{2}y^{2})=x+c $

D) $ y=x\sin x+c $

Show Answer

Answer:

Correct Answer: B

Solution:

$ xdy+ydx=\sqrt{1-x^{2}y^{2}}dx $

Therefore $ \frac{xdy+ydx}{\sqrt{1-x^{2}y^{2}}}=dx $

$ \frac{dxy}{\sqrt{1-{{(xy)}^{2}}}}=dx $ . Integrating both side, we get $ {{\sin }^{-1}}xy=x+c $

Therefore $ xy=\sin (x+c) $ .