Differential Equations Question 9

Question: The solution of the differential equation $ x(e^{2y}-1)dy+(x^{2}-1)e^{y}dx=0 $ is

[AISSE 1990]

Options:

A) $ e^{y}+{e^{-y}}=\log x-\frac{x^{2}}{2}+c $

B) $ e^{y}-{e^{-y}}=\log x-\frac{x^{2}}{2}+c $

$ $

C) $ e^{y}+{e^{-y}}=\log x+\frac{x^{2}}{2}+c $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ x(e^{2y}-1)dy+(x^{2}-1)e^{y}dx=0 $

Therefore $ \int _{{}}^{{}}{\frac{e^{2y}-1}{e^{y}}}dy=\int _{{}}^{{}}{\frac{1-x^{2}}{x}dx} $

Therefore $ e^{y}+{e^{-y}}=\log x-\frac{x^{2}}{2}+c $ .