Differential Equations Question 91

Question: Solution of the differential equation, $ ydx-xdy+xy^{2}dx=0 $ can be

Options:

A) $ 2x+x^{2}y=\lambda y $

B) $ 2y+y^{2}x=\lambda y $

C) $ 2y-y^{2}x=\lambda y $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ \frac{ydx-xdy}{y^{2}}=-xdx $

Therefore $ d( \frac{x}{y} )=-xdx $

Integrating both side, we get $ \frac{x}{y}=-\frac{x^{2}}{2}+c $

Therefore $ 2x+x^{2}y=2cy $

Therefore $ 2x+x^{2}y=\lambda y $ [ $ \lambda =2c $ ]