Differential Equations Question 92

Question: If c is any arbitrary constant, then the general solution of the differential equation $ ydx-xdy=xydx $ is given by

[J & K 2005]

Options:

A) $ y=cx{e^{-x}} $

B) $ x=cy{e^{-x}} $

C) $ y+e^{x}=cx $

D) $ ye^{x}=cx $

Show Answer

Answer:

Correct Answer: D

Solution:

Given $ ydx-xdy=xydx $

Therefore $ \frac{ydx-xdy}{xy}=dx $

Therefore $ d[ \ln ( \frac{x}{y} ) ]=dx $

Integrating both sides, we get $ \ln \frac{x}{y}+\ln c=x $

Therefore $ ye^{x}=cx $ .