Differential Equations Question 94

Question: $ (x^{2}+y^{2})dy=xydx $ . If $ y(x_0)=e $ , $ y(1)=1 $ , then value of $ x_0= $

[IIT Screening 2005]

Options:

A) $ \sqrt{3}e $

B) $ \sqrt{e^{2}-\frac{1}{2}} $

C) $ \sqrt{\frac{e^{2}-1}{2}} $

D) $ \sqrt{\frac{e^{2}+1}{2}} $

Show Answer

Answer:

Correct Answer: A

Solution:

$ x^{2}dy+y^{2}dy=xydx $

Therefore $ x(xdy-ydx)=-y^{2}dy $

Therefore $ x\frac{(ydx-xdy)}{y^{2}}=dy $

Therefore $ \frac{x}{y}d( \frac{x}{y} )=\frac{dy}{y} $

Integrating, $ \frac{x^{2}}{2y^{2}}={\log _{e}}y+c $

Given $ y(1)=1 $

Therefore $ c=\frac{1}{2} $

Therefore $ \frac{x^{2}}{2y^{2}}={\log _{e}}y+\frac{1}{2} $

Now $ y(x_0)=e $

Therefore $ \frac{x_0^{2}}{2e^{2}}-{\log _{e}}e-\frac{1}{2}=0 $

Therefore $ x_0^{2}=3e^{2} $

Therefore $ x_0=\pm \sqrt{3}e $