Differentiation Question 102

Question: The differential coefficient of $ {{\tan }^{-1}}\frac{2x}{1-x^{2}} $ w.r.t. $ {{\sin }^{-1}}\frac{2x}{1+x^{2}} $ is

[Roorkee 1966; BIT Ranchi 1996; Karnataka CET 1994; MP PET 1999; UPSEAT 1999, 2001]

Options:

A) 1

B) - 1

C) 0

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ y_1={{\tan }^{-1}}\frac{2x}{1-x^{2}} $ and $ y_2={{\sin }^{-1}}\frac{2x}{1+x^{2}} $

Differentiating w.r.t. x of $ y_1 $ and $ y_2 $ , we get $ \frac{dy_1}{dx}=\frac{d}{dx}[ {{\tan }^{-1}}\frac{2x}{1-x^{2}} ] $

Putting $ x=\tan \theta $ ,
$ \therefore y_1={{\tan }^{-1}}\tan 2\theta =2\theta =2{{\tan }^{-1}}x $

and $ y_2={{\sin }^{-1}}\sin 2\theta =2{{\tan }^{-1}}x $

Again $ \frac{dy_1}{dx}=\frac{d}{dx}[2{{\tan }^{-1}}x]=\frac{2}{1+x^{2}} $

…..(i) and $ \frac{dy_2}{dx}=\frac{d}{dx}[2{{\tan }^{-1}}x]=\frac{2}{1+x^{2}} $

…..(ii) Hence $ \frac{dy_1}{dy_2}=1 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें