Differentiation Question 102

Question: The differential coefficient of $ {{\tan }^{-1}}\frac{2x}{1-x^{2}} $ w.r.t. $ {{\sin }^{-1}}\frac{2x}{1+x^{2}} $ is

[Roorkee 1966; BIT Ranchi 1996; Karnataka CET 1994; MP PET 1999; UPSEAT 1999, 2001]

Options:

A) 1

B) - 1

C) 0

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ y_1={{\tan }^{-1}}\frac{2x}{1-x^{2}} $ and $ y_2={{\sin }^{-1}}\frac{2x}{1+x^{2}} $

Differentiating w.r.t. x of $ y_1 $ and $ y_2 $ , we get $ \frac{dy_1}{dx}=\frac{d}{dx}[ {{\tan }^{-1}}\frac{2x}{1-x^{2}} ] $

Putting $ x=\tan \theta $ ,
$ \therefore y_1={{\tan }^{-1}}\tan 2\theta =2\theta =2{{\tan }^{-1}}x $

and $ y_2={{\sin }^{-1}}\sin 2\theta =2{{\tan }^{-1}}x $

Again $ \frac{dy_1}{dx}=\frac{d}{dx}[2{{\tan }^{-1}}x]=\frac{2}{1+x^{2}} $

…..(i) and $ \frac{dy_2}{dx}=\frac{d}{dx}[2{{\tan }^{-1}}x]=\frac{2}{1+x^{2}} $

…..(ii) Hence $ \frac{dy_1}{dy_2}=1 $ .