Differentiation Question 104

Question: $ \frac{d}{dx}{{\tan }^{-1}}(\sec x+\tan x)= $

[AISSE 1985, 87; DSSE 1982, 84]

Options:

A) 1

B) 1/2

C) $ \cos x $

D) $ \sec x $

Show Answer

Answer:

Correct Answer: B

Solution:

$ \frac{d}{dx}{{\tan }^{-1}}(\sec x+\tan x)=\frac{d}{dx}{{\tan }^{-1}}( \frac{1+\sin x}{\cos x} ) $

$ =\frac{d}{dx}{{\tan }^{-1}}( \frac{\sin ( \frac{x}{2} )+\cos ( \frac{x}{2} )}{\cos ( \frac{x}{2} )-\sin ( \frac{x}{2} )} )=\frac{d}{dx}( \frac{\pi }{4}+\frac{x}{2} )=\frac{1}{2} $ .